The Development of the Electrically Controlled Silicon Switches for Active XBand High Power RF Compression Systems

Jiquan Guo

SLAC National Accelerator Lab

Outline

* Introduction
* RF pulse compression systems
* The switch module and the multiple-element switches
* Design and fabrication of the ultra-high power switch window
* Testing setup and results
* Conclusion

Introduction

* High Energy Linear Accelerators
- Applications
- Advantages
* Challenges:
- High gradient and RF field
- High RF power
* 3 design approaches
- Super-conducting
- Normal conducting w/ pulse compression
- Normal conducting w/ two beam

	NLC Normal conducting	CLIC-G Normal conducting	ILC Super- conducting
CMS Energy	500 GeV	3 TeV	500 GeV
Repetition Rate (Hz)	120	50	5
RF Frequency (GHz)	11.424	12	1.3
Loaded Gradient (MV/m)	55	>100	31.5
Fill Time	104 ns	62.9 ns	$596 \mu \mathrm{~s}$
RF Pulse Length	396 ns	240.8 ns	1.565 ms
Klystron Pulse Length	$3.168 \mu \mathrm{~s}$	$139 \mu \mathrm{~s}$	1.565 ms
Structure peak RF power (MW/m)	~ 100	295	~ 0.4
Active Two Linac Length (km)	~ 12	NA	~ 20

Function of the RF pulse compression systems

* A klystron operating at a very short pulse width will be inefficient and uneconomical. RF pulse compression systems are preferred to match the longer klystron output to the loads requiring shorter input.
* Application not limited to LINACs.

Outline

* Introduction
* RF pulse compression systems
* The switch module and the multiple-element switches
* Design and fabrication of the ultra-high power switch window
* Testing setup and results
* Conclusion

Different Types of RF Pulse Compression Systems

Type of Compression System	Size	Intrinsic Efficiency	High Compression Gain				
SLED	Compact	Low	Max=9	Wilson and Farkas, 1973			
SLED-II (Resonant Delay line Compression System)	Compact	Low with high compression ratio	Max =9	Wilson et al, 1990			
BPC (Binary Pulse Compression System)	Needs long delay line	100%	Difficult	Farkas, 1986			
DLDS (Delay line Distribution System)	Needs long delay line (shorter than BPC)	100%	Difficult	Mizuno, 1994			
Active DLDS	Medium	100%	Possible	Tantawi, 1995			
Active SLED-II	Compact	$>81.5 \%$	Easy	Tantawi, 1995			
2009-2-24							Page 6

Resonant Delayline Pulse Compression System SLED-II

Storage Cavities/Lines

* Use over-moded delayline. Overcoupled for high compression ratio operation.
* In the charging phase, RF energy transmits through the iris and is accumulated in the delayline.
* In the discharging phase, the input RF can be turned off, getting a maximum output gain of 4 . Or the input keeps on but with phase flipped, the maximum gain can be 9 .

Active Resonant Delayline Pulse Compression System

* A passive SLED-II type system has low efficiency due to
- RF emission during charging
- The delayline can not be fully discharged
* An active SLED-II type compression system uses a switchable iris, which can change the transmission coefficient during discharging.
- reduce emitted power during the charging.
- fully discharge the delayline.

Theoretical power gain of the lossless resonant delayline pulse compression systems, with input phase flip before the last time bin

Passive DLDS

The particle beam provides about $1 / 2$ of the delay

Active DLDS

Outline

* Introduction
* RF pulse compression systems
* The switch module and the multiple-element switches
* Design and fabrication of the ultra-high power switch window
* Testing setup and results
* Conclusion

Possible choices of the high power RF switch

* Plasma switch: uses high voltage(100KV) to generate conducting plasma
* Ferroelectric switch: applies high voltage(100KV) to build the electric field and change the dielectric permittivity.
* Ferromagnetic switch: uses magnetic field and change the permeability.
* Semiconductor optical switch: uses a high power laser pulse to generate carriers and changes the conductivity
* Semiconductor electrical switch: uses PIN diodes to inject carriers
* We have chosen the silicon electrical switch.

Basic physics of the semiconductor active window

RF losses in a conductor

$$
P_{l}=\left|H_{\text {short }}\right|^{2} R_{s}=4 P_{\text {in }} \frac{R_{s}}{Z_{g}}
$$

Conductivity in a semiconductor

$$
\begin{aligned}
\sigma & =e\left(\mu_{n} n+\mu_{p} p\right) \\
& =2 e \mu_{e f f} n
\end{aligned}
$$

Design of the active switch module

* Switch the S-matrix of the two port network by changing the reflection phase in the $3^{\text {rd }}$ arm
* The S-matrix of the ON state (when the active window becomes reflective) is tuned by changing the position of the active window.
* The S-matrix of the OFF state is tuned by the movable short.
* The ON state loss can be matched by the iris

Equivalent power handling capacity of the module

$$
\begin{aligned}
P_{\text {in }} & =\left(\sqrt{P_{1}}+\sqrt{P_{2}}\right)^{2} \\
& =\frac{A G L_{o n}}{4 R_{s} \sin ^{2}\left(\psi_{1}-\psi_{0}\right)} E_{\max }^{2} \\
& =\frac{G L_{o n} N e \mu_{e f f}}{2 \sin ^{2}\left(\psi_{1}-\psi_{0}\right)} E_{\max }^{2}
\end{aligned}
$$

$E_{\text {max }}$: Maximum off state E-field
G: Geometric factor, ~ 0.25
A: Waveguide cross-section area
$\mu_{\text {eff }}$ Semiconductor effective mobility
P_{1} and P_{2} : Incoming power from port 1 and 2

Power handling capacity is determined by

* Material constants
- $E_{\text {max }}, \mu_{\text {eff }}$
- System requirements
- $L_{\text {on }}$: module on state loss
- $\cos \psi_{1}$ and $\cos \psi_{0}$: Module reflection coefficients for on/off states
* Number of carrier pairs N (when the thickness of the carrier layer is optimized as 1 skin depth)

Independent of waveguide size and impedance, if the module's on state loss is matched to the system requirement

Active window in a Circular Waveguide

* Working under TE_{01} mode in a circular waveguide
* No radial electric field and no azimuthal magnetic field/axial current
- Minimize RF leaking
* TE_{01} mode has lower attenuation (at high frequency) and lower field, common choice for X -band high power RF transmission

The Circular Waveguide Tee

* Applications
* Constructed with one rectangular TE_{20} Tee and three circular TE_{01} to rectangular TE_{20} mode converters
* Novel, compact design, low loss

Circular-rectangular mode-converter

* Composed of three sections
- Rectangular to oval taper
- Oval section

- Oval to circular taper
* Mechanism
- Rec TE 20 is excited into two modes $\mathrm{M}_{1} / \mathrm{M}_{2}$ through Taper2
- Phase of M_{1} / M_{2} adjusted in straight oval section
- M_{1} / M_{2} can excite cir $T E_{21}$ and TE ${ }_{01}$ mode through Taper1; with proper phase, TE_{21} eliminated.
* Much smaller than conventional designs

Multi-element Switch

* Combine several switches to provide higher power handling capacity
* Two options: parallel switch array, cascaded phase shifter
* Each option can compose a switchable iris or an SPDT switch Parallel switch array:
- Elements in parallel
- Power distributed and recombined
- S-parameter/loss same as single element

Cascaded phase shifter

Phase shifter module:

- Elements in serial
- Each element provide small
- When the active window is off,
the window is close to standing wave node with lower E-field

Switchable iris using phase shifter:

$$
S=j\left(\begin{array}{cc}
\sin \psi & \cos \psi \\
\cos \psi & -\sin \psi
\end{array}\right)
$$

SPDT switches (for DLDS)

Scaling of the parallel switch array and the cascaded phase shifter

* Parallel switch array:

$$
P_{\text {sys }}=n P_{e l e}
$$

* Cascaded phase shifter

$$
P_{\text {par }} / P_{\text {cas }}=\frac{4\left(\psi_{1}-\psi_{0}\right)^{2}\left(1+\frac{\pi}{\pi+\psi_{1}-\psi_{0}}\right)^{2}}{\sin ^{2}\left(\psi_{1}-\psi_{0}\right)}
$$

Ratio between the power handling capacity of the parallel switch array and the cascaded phase shifter

Outline

* Introduction
* RF pulse compression systems
* The switch module and the multiple-element switches
* Design and fabrication of the ultra-high power switch window
* Testing setup and results
* Conclusion

Design of the switch window

* Optimized at 11.424 GHz
* Works in a 1.299 inch circular waveguide under TE_{01} mode
* Minimize the number of carriers required for switching
- Close to cutoff, high Z_{g} (at the cost of power handling capacity)
- Inject carriers into a ring where the field is the highest
- The thickness of the carrier layer is $30-50 \mu \mathrm{~m}$
* Minimize the OFF state loss by using high purity silicon
- Uses $90 \mathrm{~K} \Omega \mathrm{~cm}$ resistivity silicon wafer, $525 \mu \mathrm{~m}$ thick
* A metal ring on the window
- Supplying bias
- Reducing the amount of carriers required for switching
- Eliminating reflection during the OFF state

The switch window and holder

Simulated RF properties of the switch window

* OFF state:
- S_{11} is close to 0.1
- One-pass setup loss is about 0.1% in the $90 \mathrm{~K} \Omega \mathrm{~cm}$ silicon and 0.6% in the aluminum ring
* ON state:
- filled with carrier pairs at $1 \times 10^{17} / \mathrm{cm} 3,50 \mu \mathrm{~m}$ in depth
- The total number of carrier pairs is 8.8×10^{14}, with $140 \mu \mathrm{C}$ charge
- S_{12} is close to 0.15
- Loss is about 6.8\%
* Estimated equivalent power handling capacity

Assumed Maximum E-	
Field (MV/m)	Estimated Power Handling Capacity (MW)
10	12
30	108

Design of the PIN diode

* Planar structure compatible with CMOS process
* Diodes length 60-75micron
- Short diodes has better uniformity in carrier distribution
- Simulated on time 200-300ns for PIN diodes driven by a 1KA driver with ~50ns rise time.
- Simulated carrier layer thickness $\sim 50 \mu \mathrm{~m}$

Fabrication of the diode array

* Fabricated at Stanford Nanofabrication Facility
* Using CMOS compatible technology
* Process simulated with TSuprem, and the results are exported to the electrical simulation with Medici
* Several rounds of revisions

Outline

* Introduction
* RF pulse compression systems
* The switch module and the multiple-element switches
* Design and fabrication of the ultra-high power switch window
* Testing setup and results
* Conclusion

Driver circuit

One Pass Test \dagger

NWA measurement for off state:

- $\mathrm{S}_{12}=0.939$,
- $S_{11}=0.267$,
- loss~4.7\% (2.3\% on silicon window)

Switching test:

- Driver current $\sim 1 \mathrm{KA}$
- Switch time 200-300ns
- On state loss ~10\%

Switch Module Setup with the Circular Tee

* Connect $3^{\text {rd }}$ port of the Tee with active window and a movable short
* On state S-parameters adjusted by adding spacers between the window and Tee.
* Off state S-parameters scanned with short plane at different, different scans were made with different spacers between the window and Tee.

Switch module test results

* Off state S-parameters were scanned with short plane at different locations
* In the active switching, S-parameters during on/off states were tuned close to values optimized for active compression
- Switch time 200-300ns

S-parameters/losses vs. short location

2009-2-24

Time Response: Switch Module

Page 33

Active compression experiment

* Connect the switch module to a 375ns overmoded delay line
* Low power RF input, pulse width ~20 times delay time
* Two experiments carried out:
- Window switched and input phase flip before the last time bin (375ns before the end)
- Window switched at the end of input pulse without phase flip.
* Driver current $\sim 1.5 \mathrm{KA}$

Active compression experiment results

* With phase flip, 8 times gain observed. Improvement over passive compression,
* Without phase flip, 6 times gain recorded. Impossible for passive systems.

Conclusion

* Active Window
- The S Matrix for both the on and off states of the active window are close to the desired value. 200-300ns switch time has been achieved with $\sim 10 \%$ loss.
- The switch module has successfully performed the function of tuning the S-matrix of both on and off states.
* Related RF components
- Active window holder
- Circular waveguide Tee and circular-rectangular modeconverter
* Active pulse compression system
- 8 times gain has been recorded, improvement against passive.
- 6 times gain in the case that input phase cannot be flipped, possible to use magnetron as the RF source, which is impossible for passive systems
* Possible improvements:
- Faster switching: higher driver current; laser; reversed bias
- Lower off state loss

Acknowledgements

